Improved bottle fixing
Bottle grippers act as an anti-twist lock that holds the container in place just above its base while the screw capper screws the bottle cap closed. KHS has now replaced the previous circular rubber bumpers held by one arm respectively by much larger half-shells that are attached to two arms each. The effect is similar to holding a bottle with two hands instead of with four fingers: the larger contact surface reliably prevents unwanted rotation of the container. The bottles are correctly capped; the number of leaky containers channeled out and thus the reject rate are reduced.
Switching valves for optimum filling behavior
Increasing product diversity in the beverage industry means that some products are more challenging to fill than others because of their foaming properties. Flexibility is called for here. A new switching valve controls the volume of the inflow to the actual filling valve and thus permits a total of four different infeed speeds. If the infeed is slower or at a lower volume, the amount of foaming is reduced. The infeed speed is stored in the product recipes; there is no need for manual conversion. This improves filling accuracy and means that the filling volume can be more easily reproduced. Foaming in the bottle during filling is also minimized. This results in a stable output of beverages with different properties, in turn boosting efficiency and the flexibility required to fill a wide assortment of products.
New ring gap filling valve for pulp and fibers
If the portfolio requires it, beverages with pulp and fibers can be processed by the new ring gap filling valve without any loss of performance. Products with fibers 15–20 millimeters long and a high pulp content can even be filled without the machine becoming blocked or clogged. As opposed to the usual filling valves with a gas lock, on the new valves the valve cone is placed directly at the discharge so that nothing sprays or drips. What’s more, the filling jet is so homogenous and streamlined that a lot less foam forms in the bottle.
Longer maintenance intervals
Whereas in the past maintenance was required at relatively short intervals for microbiological reasons, with each session lasting five to eight hours, maintenance intervals have now been lengthened so that machines only need to be serviced once or twice a year. Thanks to improved hygiene, increasing experience in the operation of machines and modern materials such as PTFE (polytetrafluorethylene or Teflon), KHS has been able to reduce its safety buffer down to a reasonable level. Now four times longer, these intervals follow on from one another and include all tests previously performed during maintenance. This gives beverage producers much higher machine availability. Operators also profit from cost savings for maintenance and overhauls of up to 20% within five years.
Aseptic filling technology from KHS is complemented by an extensive portfolio of proven process engineering machines. “We provide systems and solutions from a single source,” Härtel emphasizes. “These range from the blending of components in the syrup room through deaeration and aseptic flash pasteurization just before filling to chunk dosing in a dual-flow process.” The Dortmund company thus provides the full bandwidth of technologies and services needed to make the increasingly popular beverages in the sensitive product segment – from acceptance of the raw material concentrate through design of the bottles and their components to filling and packaging of the product.